
ÉTUDE DU PEUPLEMENT PHYTOPLANCTONIQUE

Plans d'eau du Romelaere, du Vignoble et de la Mare à Goriaux. Campagne de juin 2003

Mission écologie du milieu

PLANS D'EAU DU ROMELAERE, DU VIGNOBLE ET DE LA MARE A GORIAUX, CAMPAGNE DE JUIN 2003

Commande n° 03021

Juillet 2003

Etude réalisée par : Florence Pères, Mesures et Etudes en Environnement aquatique

Référence bibliographique : Pères F. (2003) Etude du peuplement phytoplanctonique des plans d'eau du Romelaere, du Vignoble et de la mare à Goriaux, campagne de juin 2003. Rapport d'Etude – Agence de l'Eau Artois-Picardie, Douai, 10 p. + annexes

Crédit photographique de la 1ère de couverture : Pères Florence

SOMMAIRE

1.	INT	FRODUCTION	3
2.	IDE	ENTIFICATION DES ALGUES	4
3.	RE:	SULTATS	5
,	3.1	COMPOSITION DU PEUPLEMENTRICHESSE TAXONOMIQUE	5
4.	CO	NCLUSION	8

1. INTRODUCTION

Le principal objectif de l'étude est d'avoir une idée de la composition des algues du phytoplancton de trois plans d'eau : l'étang de Romelaere, l'étang du Vignoble, la mare à Goriaux.

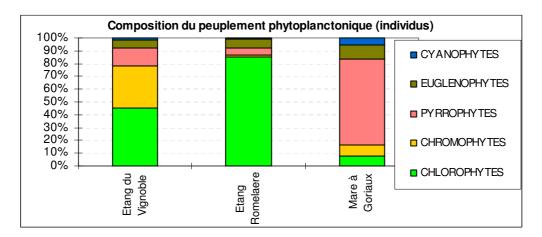
2. IDENTIFICATION DES ALGUES

Les principales étapes sont décrites ci dessous :

- Une partie aliquote de l'échantillon est placée entre lame et lamelle et observée au microscope à l'aide du grossissement x 200, x 400 ou x 1000 si nécessaire (microscope LEICA BMLB équipé du contraste de phase et d'un micromètre oculaire);
- 400 individus sont comptés et déterminés au genre ou à l'espèce dans la mesure du possible;
- Plusieurs pipetages successifs sont réalisés sur le même échantillon afin de pallier une hétérogénéité de répartition des algues;
- En ce qui concerne les algues filamenteuses ou coloniales, le nombre de cellules est estimé en rapportant la mesure de la colonie à la forme géométrique la plus proche.
- Pour les formes simples, le nombre de cellules est compté directement (exemple
 : 1 Scenedesmus = 4 cellules généralement).

Les résultats sont exprimés en abondance relative (%) de chaque taxon en nombre d'individus et en nombre de cellules.

La saisie des résultats se fait par intégration des résultats issus des comptages dans un programme de calcul sous Excel.

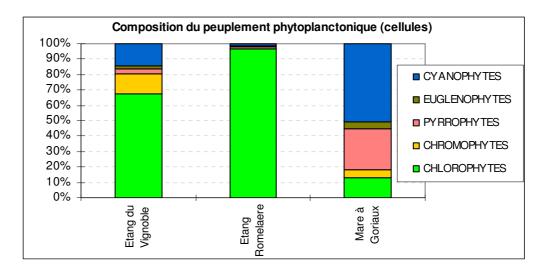

Les résultats sont fournis dans un tableau en annexe en nombre d'algues et en nombre de cellules.

Des photos des algues caractéristiques des milieux ont été réalisées en utilisant une caméra et les objectifs x63 ou x100 à l'immersion.

3. RESULTATS

3.1 COMPOSITION DU PEUPLEMENT

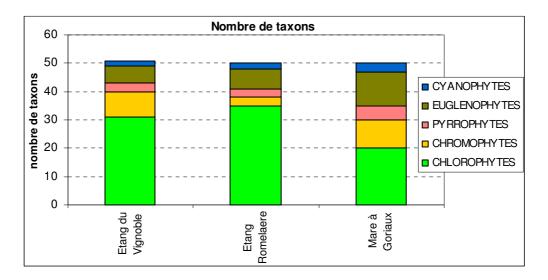
La figure suivante représente la répartition des grands groupes d'algues (exprimés en nombre d'individus) dans les trois milieux étudiés.



On distingue 3 types de peuplement en fonction des plans d'eau :

- L'étang du Vignoble se caractérise par l'abondance des Chlorophytes et des Chromophytes qui représentent à elles deux 80% du peuplement. Les Chlorophytes sont essentiellement représentées par des chlorococcales comme Pediastrum duplex, Scenedesmus quadricauda, Ankyra sp ... (voir tableau en annexe). Ces algues caractérisent les milieux riches en éléments nutritifs. Les Chromophytes regroupent les diatomées, les chrysophycées xanthophycées. Les diatomées sont particulièrement bien représentées, en particulier avec le genre Skeletonema sp. On note la présence non négligeable de Pyrrophytes constitué surtout de cryptophycées, algues unicellulaires et flagellées. Cryptomonas sp représente 10% du peuplement phytoplanctonique. Ce genre possède 40 espèces qui sont très difficiles à identifier. Ces algues de petite taille sont capables de croître rapidement quand les conditions leur sont favorables ; elles possèdent un taux de reproduction élevé et sont qualifiées de stratégie « r » (par opposition aux grandes algues de stratégie dite « k »). Elles ont besoin d'une quantité importante d'éléments nutritifs, leur affinité vis à vis du phosphore notamment étant faible. Ces algues ont la capacité de se développer dans les eaux riches en composés organiques, par exemple dans les milieux aquatiques où se déversent des eaux usées.
- L'étang de Romelaere possède un peuplement largement dominé par les Chlorophytes. Les espèces dominantes sont *Scenedesmus cf. armatus* (17% du peuplement) et *Coelastrum microporum* (13%). Ces algues vertes sont caractéristiques des milieux eutrophes.
- La mare à Goriaux se distingue par l'abondance de Pyrrophytes, notamment les cryptophycées. L'algue *Cryptomonas sp* représente plus de 40% du peuplement planctonique et tend à indiquer une forte charge organique dans le milieu. La présence de nombreuses algues appartenant aux Euglénophytes comme les

genres Euglena, Phacus, Colacium...confirme la présence de composés organiques, qu'ils soient de nature végétale ou animale.


Lorsque les inventaires sont exprimés en nombre de cellules, les résultats sont différents de ceux obtenus précédemment, en particulier pour la mare à Goriaux (figure suivante).

- Le peuplement de l'étang du Vignoble est dominé par les Chlorophytes. L'espèce la plus abondante est *Pediastrum duplex* (31% du peuplement). Les Cyanophytes sont plus abondantes comparativement aux résultats exprimés en nombre d'individus. Ceci s'explique par le fait, qu'une algue, considérée comme un individu, est composée par un grand nombre de cellules. Il s'agit ici de *Merismopedia tenuissima*, colonies formées de très petites cellules.
- L'étang de Romelaere est caractérisé par la forte dominance des Chlorophytes qui représentent plus de 95% du peuplement phytoplanctonique. Les chlorococcales sont particulièrement abondantes ; on a pu observer dans l'échantillon de nombreuses colonies de *Coelastrum microporum* avec des cellules en division (voir planche).
- Dans la mare à Goriaux, les Cyanophytes (algues bleues) sont beaucoup plus abondantes que précédemment. Elles sont représentées par Merismopedia tenuissima (33%) et Aphanizomenon sp (17%). Ces taxons sont communs dans les eaux stagnantes eutrophes, en particulier durant la période estivale. Les cellules de Merismopedia tenuissima sont de très petite taille et forment des colonies tabulaires rectangulaires. Aphanizomenon sp est une nostocale à hétérocystes qui forme des filaments pouvant se grouper en surface et former des fleurs d'eau (ou "blooms") et devenir gênantes notamment dans le cadre de la baignade. Ces filaments sont peu nombreux dans l'échantillon mais l'estimation du nombre de cellules tend à surestimer leur représentation. Notons que certaines espèces d'Aphanizomenon sont potentiellement toxiques.

3.2 RICHESSE TAXONOMIQUE

La figure suivante représente, par plan d'eau, le nombre de taxons dans chaque grand groupe d'algues.

Environ 50 taxons ont été identifiés dans chaque plan d'eau. Dans l'étang du Vignoble et de Romelaere, les Chlorophytes présentent la plus grande richesse taxonomique avec une trentaine de taxons. La mare à Goriaux se caractérise par la présence de nombreuses Euglénophytes, en particulier des taxons électifs d'eaux riches en matière organique (genres Euglena, Lepocinclis, Colacium..).

4. CONCLUSION

L'analyse de la composition taxonomique a montré que les trois milieux aquatiques étudiés sont colonisés par des algues de milieux eutrophes. Dans l'étang du Vignoble et surtout dans la mare à Goriaux, la composition du peuplement phytoplanctonique permet de suspecter la présence de matière organique dans le milieu : forte présence d'Euglénophytes, abondance de *Cryptomonas sp.*

Agence d	de l'Eau	Artois-H	Picardie
----------	----------	----------	----------

9

REMERCIEMENTS

Merci à Monsieur Le Cohu pour son aide à l'identification.

PRINCIPAUX OUVRAGES CONSULTES

BOURRELLY, P. (1972). Les algues d'eau douce. Les algues vertes. Paris.

BOURRELLY, P. (1981). Les algues d'eau douce. Tome II : Les algues jaunes et brunes. Paris.

BOURRELLY, P. (1985). <u>Les algues d'eau douce. Tome III : Les algues bleues et rouges</u>. Paris.

COMPERE, P. (1986). Cyanophytes: 120 p.

HUBER-PESTALOZZI, U. and A. GOTTFRIED (1983). Das Phytoplankton des Suesswassers. Systematik und Biologie. Part 7, Teil 1: Komarek, J. und B. Fott: Chlorophyceae, Ordnung Chlorococcales..

KOMAREK, J. (1998). Subsswasserflora von Mitteleuropa : band 19 (1). und Konstantinos Anagnostidis : Cyanoprokaryota,.

KRAMMER K. and LANGE-BERTALOT H., (1986): *Bacillariophyceae 1. Teil: Naviculaceae. Sübwasserflora von Mitteleuropa.* G. Fisher Verlag., Stuttgart, 876 p.

KRAMMER K. and LANGE-BERTALOT H., (1988): Bacillariophyceae 2. Bacillariaceae, Epithemiaceae, Surirellaceae. Sübwasserflora von Mitteleuropa. G. Fisher Verlag., Stuttgart, 596 p.

KRAMMER K. and LANGE-BERTALOT H., (1991): *Bacillariophyceae 3. Centrales, Fragilariaceae, Eunotiaceae, Sübwasserflora von Mitteleuropa.* G. Fisher Verlag, Stuttgart, 600 p.

ANNEXES

Annexe I: Tableau des inventaires

Annexe II: photographies des algues

Annexe I

Tableau des inventaires (%)

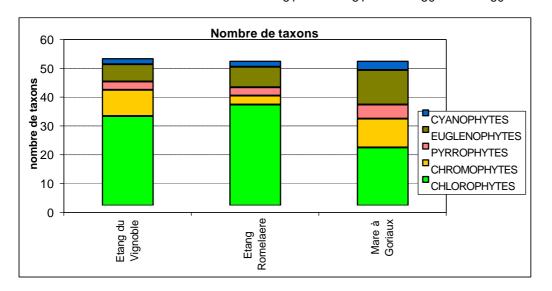
PHYTOPLANCTON DE :	Etang du	Vignoble	Etang Au	Etang Audomarois Mare		à Goriaux	
Date	4-jui	in-03	5-jui	n-03	24-ju	in-03	
	individus	cellules	individus	cellules	individus	cellules	
CHLOROPHYTES							
Volvocales	6	34					
Carteria sp							
cf Gyromitus sp							
Chlamydomonas sp	2	2	2	2	2	2	
Lobomonas sp							
Phacotus lenticularis	7	7					
Chlorococcales							
Ankyra sp	23	23	2	2	2	2	
Coelastrum pseudomicroporum	2	20	16	156	1	8	
Coelastrum sphaericum			3	24			
Coelastrum microporum	0	0	55	530	1	16	
cf Coenochloris sp			14	323			
Coronastrum sp							
Coronastrum sp							
Crucigenia tetrapedia			8	112	4	16	
Crucigeniella apiculata	1	4	6	72			
Crucigeniella pulchra							
Dictyosphaerium sp	1	4			1	10	
Didymocystis sp	1	2	1	2	3	6	
Elakatothrix sp							
cf Eutetramorus sp	1	24					
Franceia sp	1	1	1	1			

Fusola cf viridis						
Golenkinia sp						
Kirchneriella contorta						
Kirchneriella lunaris						
Lagerhemia sp	5	5	4	4		
Micractinium sp						
Monoraphidium arcuatum	1	1				
Monoraphidium contortum	3	3	1	1	2	2
Monoraphidium convultum						
Monoraphidium sp	1	1				
Oocystis sp	11	44	14	52	2	8
Pediastrum boryanum	3	40	21	328	1	8
Pediastrum duplex	30	464	7	136	1	16
Pediastrum simplex	2	16				
Pediastrum tetras	2	24	5	40	1	16
Quadricoccus sp						
Radiococcus sp						
Scenedesmus acuminatus	3	20	9	60		
Scenedesmus acutus			2	12		
Scenedesmus abundans			1	4	2	6
Scenedesmus armatus	13	48	71	284		
Scenedesmus alternans	5	20			1	4
Scenedesmus bicaudatus	1	4	8	32	2	8
Scenedesmus brasiliensis						
Scenedesmus disciformis	1	8	8	62		
Scenedesmus heteracanthus			1	4		

Scenedesmus intermedius			3	12		
Scenedesmus linearis	5	38	1	4		
Scenedesmus magnus	2	8	17	68		
Scenedesmus opoliensis	10	40	8	32		
Scenedesmus quadricauda	31	84	42	156		
Scenedesmus sp			2	8	1	4
Scenedesmus sp2 (2 cel)						
Sphaerocystis sp						
Tetraedron caudatum	1	1	2	2	1	1
Tetraedron incus			1	1		
Tetraedron minimum			3	3		
Tetraedron platyisthum						
Tetrastrum glabrum			8	32		
Treubaria sp						
Zygnématales						
Cosmarium sp						
Closterium aciculare	1	1	6	6	2	2
Closterium sp					1	1
Staurodesmus sp						
Straurastrum sp	1	1	2	2	2	2
CHROMOPHYTES						
Diatomées						
Acanthoceras zachariasii						
Amphora sp		_				
Asterionella formosa						
Aulacoseira ambigua						

Aulacoseira distans						
Aulacoseira granulata	1	3			1	10
Aulacoseira sp					1	6
Cyclotella sp1	40	40	3	3	25	25
Cyclotella sp2	15	15	1	1		
Encyonema triangulum						
Fragilaria capucina						
Fragilaria crotonensis						
Fragilaria ulna	3	3				
Navicula sp						
Nitzschia sp					2	2
Nitzschia acicularis	1	1				
Rhizosolenia longiseta						
Skeletonema sp	62	124			2	2
Chrysophycées						
Chrysococcus sp					1	1
Mallomonas akrokomos						
Mallomonas sp	2	2				
Ochromonas sp	4	4				
Pseudokephyrion sp						
Pseudokephyrion conicum					1	1
Pseudokephyrion schilleri					2	2
Xanthophycées						
Bumelleriopsis sp						
Goniochloris sp			2	2	1	1
Goniochloris sp2	2	2			1	1

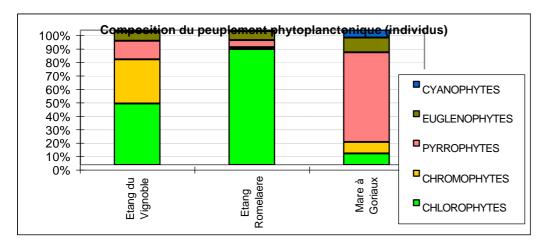
Vischeria sp						
PHYRROPHYTES						
Dinophycées						
Ceratium hirundella						
Peridinium sp	2	2	1	1	2	2
Cryptophycées						
Cryptomonas sp	40	40	15	15	179	179
Cryptomonas cf marsonii					15	15
Cryptomonas cf rostratiformis					26	26
Rhodomonas minuta	11	11	6	6	56	56
EUGLENOPHYTES						
Euglena sp1	4	4				
Euglena sp2	2	2			2	2
Colacium sp	17	17	9	9	17	17
Euglena cf oxyuris			6	6		
Euglena cf allorgeii					3	3
Euglena acus					1	1
Lepocinclis sp			4	4	4	4
Phacus pyrum	2	2			2	2
Phacus tortus			2	2	6	6
Phacus longicauda					3	3
Phacus cf pleuronectes					4	4
Phacus sp			2	2	1	1
Strombomonas sp					2	2
Trachelomonas cf hispida			1	1		

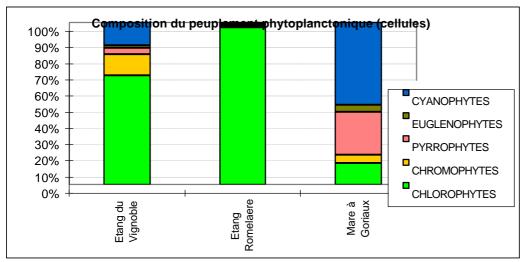

Trachelomonas sp	1	1				
Trachelomonas volvocina	1	1	4	4	1	1
CYANOPHYTES						
Anabaena sp			2	26		
Anabaena spiroides						
Aphanizomenon sp					12	179
Aphanothece sp						
Synechococcus cf nidulans						
Chroococcus sp						
Merismopedia cf tenuissima	4	208			10	352
Microcystis sp (firma?)						
Pseudanabaena cf minuta						
Woronichinia naegeliana						
indéterminées	1	1	2	2	1	1
Somme	392	1475	415	2653	417	1045

COMPOSI	TION DU PHY	TOPLANCTO	N (Résultats	en %)		
PHYTOPLANCTON DE:	Etang du	Vignoble	Etang Au	domarois	Mare à	Goriaux
Date		in-03		in-03		in-03
	individus	cellules	individus	cellules	individus	cellules
CHLOROPHYTES						
Volvocales	1,53	2,31				2.12
Chlamydomonas sp	0,51	0,14	0,48	0,08	0,48	0,19
Phacotus lenticularis	1,79	0,47				
Chlorococcales	5.07	4.50	0.40	0.00	0.40	0.40
Ankyra sp	5,87	1,56	0,48	0,08	0,48	0,19
Coelastrum pseudomicroporum	0,51	1,36	3,86	5,88	0,24	0,77
Coelastrum sphaericum			0,72	0,90	0.04	4.50
Coelastrum microporum			13,25	19,98	0,24	1,53
cf Coenochloris sp			3,37	12,17	0.00	4.50
Crucigenia tetrapedia	0.00	0.07	1,93	4,22	0,96	1,53
Crucigeniella apiculata	0,26	0,27	1,45	2,71	0.04	0.00
Dictyosphaerium sp	0,26	0,27	0.04	0.00	0,24	0,96
Didymocystis sp	0,26	0,14	0,24	0,08	0,72	0,57
cf Eutetramorus sp	0,26	1,63	0.24	0.04		
Franceia sp	0,26	0,07	0,24	0,04		
Lagerhemia sp	1,28	0,34	0,96	0,15		
Monoraphidium arcuatum Monoraphidium contortum	0,26 0,77	0,07 0,20	0,24	0.04	0.40	0,19
Monoraphidium sp	0,77	0,20	0,24	0,04	0,48	0,19
	2,81	<u> </u>	3,37	1.06	0.49	0.77
Oocystis sp	0,77	2,98 2,71	5,06	1,96	0,48	0,77 0,77
Pediastrum duploy	7,65	31,46		12,36	0,24	
Pediastrum duplex Pediastrum simplex	0,51	1,08	1,69	5,13	0,24	1,53
Pediastrum tetras	0,51	1,63	1,20	1,51	0,24	1.52
Scenedesmus acuminatus	0,31	1,36	2,17	2,26	0,24	1,53
Scenedesmus acutus	0,77	1,30	0,48	0,45		
Scenedesmus abundans			0,48	0,45	0,48	0,57
Scenedesmus armatus	3,32	3,25	17,11	10,70	0,48	0,57
Scenedesmus alternans	1,28	1,36	17,11	10,70	0,24	0,38
Scenedesmus bicaudatus	0,26	0,27	1,93	1,21	0,48	0,30
Scenedesmus disciformis	0,26	0,54	1,93	2,34	0,40	0,77
Scenedesmus heteracanthus	0,20	0,04	0,24	0,15		
Scenedesmus intermedius	1		0,72	0,45		
Scenedesmus linearis	1,28	2,58	0,24	0,15		
Scenedesmus magnus	0,51	0,54	4,10	2,56		
Scenedesmus opoliensis	2,55	2,71	1,93	1,21		
Scenedesmus quadricauda	7,91	5,69	10,12	5,88		
Scenedesmus sp	7,01	0,00	0,48	0,30	0,24	0,38
Tetraedron caudatum	0,26	0,07	0,48	0,08	0,24	0,10
Tetraedron incus	3,23		0,24	0,04		5,10
Tetraedron minimum			0,72	0,11		
Tetrastrum glabrum			1,93	1,21		
Zygnématales			.,	, , , , , , ,		
Closterium aciculare	0,26	0,07	1,45	0,23	0,48	0,19
Closterium sp	-,	-,	, -	-, -	0,24	0,10
Straurastrum sp	0,26	0,07	0,48	0,08	0,48	0,19
CHROMOPHYTES						
Diatomées						
Aulacoseira granulata	0,26	0,20			0,24	0,96
Aulacoseira sp					0,24	0,57
Cyclotella sp1	10,20	2,71	0,72	0,11	6,00	2,39
Cyclotella sp2	3,83	1,02	0,24	0,04		
Fragilaria ulna	0,77	0,20				
Nitzschia sp					0,48	0,19
Nitzschia acicularis	0,26	0,07				
Skeletonema sp	15,82	8,41			0,48	0,19
Chrysophycées						

Chrysococcus sp				0,24	0,10
Mallomonas sp	0,51	0,14			
Ochromonas sp	1,02	0,27			
Pseudokephyrion conicum				0,24	0,10
Pseudokephyrion schilleri				0,48	0,19

Xanthophycées						
Goniochloris sp			0,48	0,08	0,24	0,10
Goniochloris sp2	0,51	0,14			0,24	0,10
PYRROPHYTES						
Dinophycées						
Peridinium sp	0,51	0,14	0,24	0,04	0,48	0,19
Cryptophycées						
Cryptomonas sp	10,20	2,71	3,61	0,57	42,93	17,13
Cryptomonas cf marsonii					3,60	1,44
Cryptomonas cf rostratiformis					6,24	2,49
Rhodomonas minuta	2,81	0,75	1,45	0,23	13,43	5,36
EUGLENOPHYTES						
Euglena sp1	1,02	0,27				
Euglena sp2	0,51	0,14			0,48	0,19
Colacium sp	4,34	1,15	2,17	0,34	4,08	1,63
Euglena cf oxyuris			1,45	0,23		
Euglena cf allorgeii			·		0,72	0,29
Euglena acus					0,24	0,10
Lepocinclis sp			0,96	0,15	0,96	0,38
Phacus pyrum	0,51	0,14			0,48	0,19
Phacus tortus			0,48	0,08	1,44	0,57
Phacus longicauda					0,72	0,29
Phacus cf pleuronectes					0,96	0,38
Phacus sp			0,48	0,08	0,24	0,10
Strombomonas sp					0,48	0,19
Trachelomonas cf hispida			0,24	0,04		
Trachelomonas sp	0,26	0,07				
Trachelomonas volvocina	0,26	0,07	0,96	0,15	0,24	0,10
CYANOPHYTES						
Anabaena sp			0,48	0,98		
Aphanizomenon sp					2,88	17,13
Merismopedia cf tenuissima	1,02	14,10			2,40	33,68
indéterminées	0,26	0,07	0,48	0,08	0,24	0,10
Somme	100	100	100	100	100	100
max	15,82	31,46	17,11	19,98	42,93	33,68
Nombre de taxons	51	51	50	50	50	50


COMPOSITION DU PHYTOPLANCTON (Résultats en %)										
Et	ang du Vigno	ble Et	ang Romelae	ere N	/lare à Goriau	Х				
Date	4-jui	in-03	5-jui	n-03	24-ju	in-03				
	individus	cellules	individus	cellules	individus	cellules				
CHLOROPHYTES	31	31	35	35	20	20				
CHROMOPHYTES	9,00	9,00	3,00	3,00	10,00	10,00				
PYRROPHYTES	3,00	3,00	3,00	3,00	5,00	5,00				
EUGLENOPHYTES	6,00	6,00	7,00	7,00	12,00	12,00				
CYANOPHYTES 2,00 2,00 2,00 3,00 3,										
	51	51	50	50	50	50				



COMPOSITION DU PHYTOPLANCTON (Résultats en %)

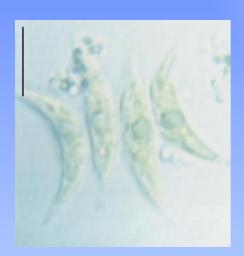
Etang du Vignolang du Vignolang Romelacang Romelaclare à Goriaulare à Goriaux

Date	4-juin-03		5-juin-03		24-juin-03	
	individus	cellules	individus	cellules	individus	cellules
CHLOROPHYTES	45,15	67,25	85,54	96,83	7,91	13,21
CHROMOPHYTES	33,16	13,15	1,45	0,23	8,87	4,88
PYRROPHYTES	13,52	3,59	5,30	0,83	66,67	26,60
EUGLENOPHYTES	6,89	1,83	6,75	1,06	11,03	4,40
CYANOPHYTES	1,28	14,17	0,96	1,06	5,52	50,91
Somme	100	100	100	100	100	100

Annexe II

Planches des algues

Algues de l'étang du Vignoble


Phacotus lenticularis
(Chlorophyte)

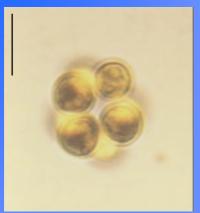
Scenedesmus quadricauda (Chlorophyte)

Oocystis sp (Chlorophyte)

Scenedesmus acuminatus (Chlorophyte)

Skeletonema sp (Chromophyte – diatomée)

Rhodomonas minuta (Pyrrophyte)


Cryptomonas sp (Pyrrophyte)

Colacium sp (Euglénophyte)

Trait = 10 μm

Algues de l'étang de Romelaere

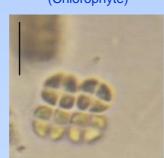
Coelastrum en division

Coelastrum microporum (Chlorophyte)

Pediastrum boryanum (Chlorophyte)

Coelastrum sphaericum (Chlorophyte)

Scenedesmus acuminatus (Chlorophyte)

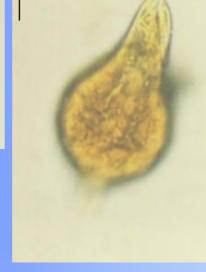

Scenedesmus cf bicaudatus (Chlorophyte)

Tetraëdron minimum (Chlorophyte)

Scenedesmus cf heteracanthus (Chlorophyte)

Crucigenia tetrapedia (Chlorophyte)

Lepocinclis sp (Euglénophyte)


Goniochloris sp (Chromophyte)

Trait = $10 \mu m$

Algues de la mare à Goriaux

Cryptomonas cf rostratiformis (Pyrrophyte)

Euglena sp (Euglénophyte)

Euglena cf allorgeii (Euglénophyte)

Trachelomonas volvocina (Euglénophyte)

Phacus pleuronectes (Euglénophyte)

Phacus longicauda (Euglénophyte)

Lepocinclis sp (Euglénophyte)

Trait = $10 \mu m$